Uniform K-theory, and Poincaré duality for uniform K-homology

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted K-theory and Poincaré duality

Using methods of KK-theory, we generalize Poincaré K-duality to the framework of twisted K-theory.

متن کامل

Twisted K-theory and Poincaré duality

Using methods of KK-theory, we generalize Poincaré K-duality to the framework of twisted K-theory.

متن کامل

Packing k-partite k-uniform hypergraphs

Let G and H be k-graphs (k-uniform hypergraphs); then a perfect H-packing in G is a collection of vertex-disjoint copies of H in G which together cover every vertex ofG. For any fixed k-graphH let δ(H,n) be the minimum δ such that any k-graphG on n vertices with minimum codegree δ(G) ≥ δ contains a perfect H-packing. The problem of determining δ(H,n) has been widely studied for graphs (i.e. 2-g...

متن کامل

C-Perfect K-Uniform Hypergraphs

In this paper we define the concept of clique number of uniform hypergraph and study its relationship with circular chromatic number and clique number. For every positive integer k,p and q, 2q ≤ p we construct a k-uniform hypergraph H with small clique number whose circular chromatic number equals p q . We define the concept and study the properties of c-perfect k-uniform hypergraphs .

متن کامل

On uniform k-partition problems

We study various uniform k-partition problems which consist in partitioning m sets, each of cardinality k, into k sets of cardinality m such that each of these sets contains exactly one element from every original set. The problems differ according to the particular measure of “set uniformity” to be optimized. Most problems are polynomial and corresponding solution algorithms are provided. A fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2019

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2018.08.014